Муниципальное общеобразовательное учреждение «Основная общеобразовательная школа п. Чикшино»

Рабочая учебная программа по предмету **«Химия»** на уровне основного общего образования

Уровень основного общего образования Срок реализации программы: 2 года

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

- 1. Для реализации рабочей учебной программы используется УМК:
- Г.Е. Рудзитис, Ф.Г. Фельдман. Химия 8; учебник для общеобразовательных учреждений. М.:Просвещение, 2016
- Г.Е. Рудзитис, Ф.Г. Фельдман. Химия 9; учебник для общеобразовательных учреждений. М.:Просвещение, 2017

Электронное приложение к учебнику Г.Е. Рудзитис, Ф.Г. Фельдман. 8 класс.

Электронное приложение к учебнику Г.Е. Рудзитис, Ф.Г. Фельдман. 9 класс.

- 2. Рабочая программа основного общего образования, разработана на основе
- Федеральный Закон «Об образовании в Российской Федерации» от 29.12. 2012 г. № 273-ФЗ;
- Приказ Министерства образования и науки Российской Федерации от 17.12.2010 № 1897 (ред. от 29.12.2014) "Об утверждении и введении в действие федерального государственного образовательного стандарта основного общего образования";
- Приказ Министерства образования и науки Российской Федерации от 31 декабря 2015 г. № 1577 «О внесении изменений в федеральный государственный образовательный стандарт основного общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897»;
- Примерная основная образовательная программа основного общего образования, одобренная Федеральным учебно–методическим объединением по общему образованию (протокол заседания от 8 апреля 2015 г. № 1/15)
- Программы общеобразовательных учреждений «Химия» 8-9 классы. Автор программы Н.Н. Гара .М.: «Просвещение», 2013г.
- 3.Структура программы концентрическая. Программа конкретизирует содержание стандарта, дает распределение учебных часов по разделам курса и рекомендуемую последовательность изучения тем и разделов с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся. В программе определен перечень демонстраций, лабораторных опытов, практических занятий и расчетных задач.
 - 4. Цели и задачи изучения предмета.
- освоение важнейших знаний об основных понятиях и законах химии, химической символике;
- овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций;
- развитие познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии с возникающими жизненными потребностями;
- воспитание отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры;
- применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.
- 5. При изучении химии в 8-9 классах использую технологии: развивающее, проблемное, игровое, коллективное обучение.

2. ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА

При написании программы использована авторская программа (Гара Н.Н.) по химии для базового изучения химии в 8-9 классах по учебнику Г.Е. Рудзитиса, Ф.Г. Фельдмана, изд. Просвещение, $2013 \, \Gamma$.

В курсе 8 класса учащиеся знакомятся с первоначальными химическими понятиями: химический элемент, атом, молекула, простые и сложные вещества, физические и химические явления, валентность; закладываются простейшие навыки в написании знаков химических элементов, химических формул простых и сложных веществ, составлении несложных уравнений химических реакций; даются понятия о некоторых химических законах: атомно-молекулярном учении, законе постоянства состава, законе сохранения массы вещества; на примере кислорода и водорода углубляются сведения об элементе и веществе. Учащиеся изучают классификацию простых и сложных веществ, свойства воды, оксидов, кислот, оснований, солей; закрепляют практические навыки, необходимые при выполнении практических и лабораторных работ. Изучаются структура Периодической системы химических элементов Д.И. Менделеева, периодический закон, виды химической связи.

Система знаний готовит учащихся к промежуточной аттестации. Кроме того к традиционным вопросам и заданиям добавлены задания, соответствующие ЕГЭ, что дает гарантию качественной подготовки к аттестации, в том числе в форме Единого государственного экзамена.

Реализация данной программы в процессе обучения позволит учащимся усвоить ключевые химические компетенции и понять роль химии среди других наук о природе, значение ее для человечества.

3. ОПИСАНИЕ МЕСТА УЧЕБНОГО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ

Естественнонаучное образование – один из компонентов подготовки подрастающего поколения к самостоятельной жизни. Наряду с гуманитарным, социально-экономическим и технологическим компонентами образования оно обеспечивает всестороннее развитие личности ребенка за время его обучения и воспитания в школе.

В системе естественнонаучного образования химия как учебный предмет занимает важное место в познании законов природы, в материальной жизни общества, в решении глобальных проблем человечества, в формировании научной картины мира, а также в воспитании экологической культуры людей.

В учебном плане на изучение химии в основной школе отводится 2 учебных часа в неделю в течение двух лет – в 8 (70 часов в год), в 9 классе (68 часов в год). Итого 138 часов.

4. ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА ХИМИИ

Изучение химии в основной школе даёт возможность достичь следующих результатов в направлении **личностного** развития:

- 1) воспитание российской гражданской идентичности: патриотизма, любви и уважения к Отечеству, чувства гордости за свою Родину, за российскую химическую науку;
- 2) формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, а также социальному, культурному, языковому и духовному многообразию современного мира;
- 3) формирование ответственного отношения к учению, готовности и способности к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору профильного образования на основе информации о существующих профессиях и личных профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;

- 4) формирование коммуникативной компетентности в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
- 5) формирование понимания ценности здорового и безопасного образа жизни; усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей;
- 6) формирование познавательной и информационной культуры, в том числе развитие навыков самостоятельной работы с учебными пособиями, книгами, доступными инструментами и техническими средствами информационных технологий;
- 7) формирование основ экологического сознания на основе признания ценности жизни во всех её проявлениях и необходимости ответственного, бережного отношения к окружающей среде;
- 8) развитие готовности к решению творческих задач, умения находить адекватные способы по ведения и взаимодействия с партнёрами во время учеб ной и внеучебной деятельности, способности оценивать проблемные ситуации и оперативно принимать ответственные решения в различных продуктивных видах деятельности (учебная поисково-исследовательская, клубная, проектная, кружковая и т. п.).

Метапредметными результатами освоения основной образовательной программы основного общего образования являются:

- 1) овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, поиска средств её осуществления;
- 2) умение планировать пути достижения целей на основе самостоятельного анализа условий и средств их достижения, выделять альтернативные способы достижения цели и выбирать наиболее эффективный способ, осуществлять познавательную рефлексию в отношении действий по решению учебных и познавательных задач;
- 3) умение понимать проблему, ставить вопросы, выдвигать гипотезу, давать определения понятиям, классифицировать, структурировать материал, проводить эксперименты, аргументировать собственную позицию, формулировать выводы и заключения;
- 4) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- 5) формирование и развитие компетентности в области использования инструментов и технических средств информационных технологий (компьютеров и программного обеспечения) как инструментальной основы развития коммуникативных и познавательных универсальных учебных действий;
- 6) умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
- 7) умение извлекать информацию из различных источников (включая средства массовой информации, компакт-диски учебного назначения, ресурсы Интернета), свободно пользоваться справочной литературой, в том числе и на электронных носителях, соблюдать нормы информационной избирательности, этики;
- 8) умение на практике пользоваться основными логическими приёмами, методами наблюдения, моделирования, объяснения, решения проблем, прогнозирования и др.;
- 9) умение организовать свою жизнь в соответствии с представлениями о здоровом образе жизни, правах и обязанностях гражданина, ценностях бытия, культуры и социального взаимодействия;
- 10) умение выполнять познавательные и практические задания, в том числе проектные;
- 11) умение самостоятельно и аргументированно оценивать свои действия и действия одноклассников, содержательно обосновывая правильность или ошибочность результата и способа действия, адекватно оценивать объективную трудность как меру фактического или предполагаемого расхода ресурсов на решение задачи, а также свои возможности в достижении цели определённой сложности;
- 12) умение работать в группе эффективно сотрудничать и взаимодействовать на основе координации различных позиций при выработке общего решения в совместной деятельности;

слушать партнёра, формулировать и аргументировать своё мнение, корректно отстаивать свою позицию и координировать её с позицией партнёров, в том числе в ситуации столкновения интересов; продуктивно разрешать конфликты на основе учёта интересов и позиций всех его участников, поиска и оценки альтернативных способов разрешения конфликтов.

Предметными результатами освоения Основной образовательной программы основного общего образования являются:

- 1) формирование первоначальных систематизированных представлений о веществах, их превращениях и практическом применении; овладение понятийным аппаратом и символическим языком химии;
- 2) осознание объективной значимости основ химической науки как области современного естествознания, химических превращений неорганических и органических веществ как основы многих явлений живой и неживой природы; углубление представлений о материальном единстве мира;
- 3) овладение основами химической грамотности: способностью анализировать и объективно оценивать жизненные ситуации, связанные с химией, навыками безопасного обращения с веществами, используемыми в повседневной жизни; умением анализировать и планировать экологически безопасное поведение в целях сбережения здоровья и окружающей среды;
- 4) формирование умений устанавливать связи между реально наблюдаемыми химическими явлениями и процессами, происходящими в микромире, объяснять причины многообразия веществ, зависимость их свойств от состава и строения, а также зависимость применения веществ от их свойств;
- 5) приобретение опыта использования различных методов изучения веществ; наблюдения за их превращениями при проведении несложных химических экспериментов с использованием лабораторного оборудования и приборов;
- 6) умение оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием;
- 7) овладение приёмами работы с информацией химического содержания, представленной в разной форме (в виде текста, формул, графиков, табличных данных, схем, фотографий и др.);
- 8) создание основы для формирования интереса к расширению и углублению химических знаний и выбора химии как профильного предмета при переходе на ступень среднего (полного) общего образования, а в дальнейшем и в качестве сферы своей профессиональной деятельности;
- 9) формирование представлений о значении химической науки в решении современных экологических проблем, в том числе в предотвращении техногенных и экологических катастроф.

5. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

В системе естественнонаучного образования химия как учебный предмет занимает важное место в познании законов природы, формировании научной картины мира, создании основы химических знаний, необходимых для повседневной жизни, навыков здорового и безопасного для человека и окружающей его среды образа жизни, а также в воспитании экологической культуры.

Успешность изучения химии связана с овладением химическим языком, соблюдением правил безопасной работы при выполнении химического эксперимента, осознанием многочисленных связей химии с другими предметами школьного курса.

Программа включает в себя основы неорганической и органической химии. Главной идеей программы является создание базового комплекса опорных знаний по химии, выраженных в форме, соответствующей возрасту обучающихся.

В содержании данного курса представлены основополагающие химические теоретические знания, включающие изучение состава и строения веществ, зависимости их свойств от строения, прогнозирование свойств веществ, исследование закономерностей химических превращений и путей управления ими в целях получения веществ и материалов.

Теоретическую основу изучения неорганической химии составляет атомно-молекулярное учение, Периодический закон Д.И. Менделеева с краткими сведениями о строении атома, видах химической связи, закономерностях протекания химических реакций.

В изучении курса значительная роль отводится химическому эксперименту: проведению практических и лабораторных работ, описанию результатов ученического эксперимента, соблюдению норм и правил безопасной работы в химической лаборатории.

Реализация данной программы в процессе обучения позволит обучающимся усвоить ключевые химические компетенции и понять роль и значение химии среди других наук о природе.

Изучение предмета «Химия» в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов (наблюдение, измерение, эксперимент, моделирование), освоения практического применения научных знаний основано на межпредметных связях с предметами: «Биология», «География», «История», «Литература», «Математика», «Основы безопасности жизнедеятельности», «Русский язык», «Физика», «Экология».

Первоначальные химические понятия

Предмет химии. *Тела и вещества*. *Основные методы познания: наблюдение, измерение, эксперимент.* Физические и химические явления. Чистые вещества и смеси. Способы разделения смесей. Атом. Молекула. Химический элемент. Знаки химических элементов. Простые и сложные вещества. Валентность. *Закон постоянства состава вещества*. Химические формулы. Индексы. Относительная атомная и молекулярная массы. Массовая доля химического элемента в соединении. Закон сохранения массы веществ. Химические уравнения. Коэффициенты. Условия и признаки протекания химических реакций. Моль – единица количества вещества. Молярная масса.

Кислород.

Кислород – химический элемент и простое вещество. *Озон. Состав воздуха*. Физические и химические свойства кислорода. Получение и применение кислорода. *Тепловой эффект химических реакций*. *Понятие об экзо- и эндотермических реакциях*.

Водород.

Водород, его общая характеристика и нахождение в природе. Получение водорода и его физические свойства. Химические свойства водорода. Применение.

Вода. Растворы

Вода в природе. Круговорот воды в природе. Физические и химические свойства воды. Применение воды. Вода-растворитель. Растворы. Насыщенные и ненасыщенные растворы. Растворимость веществ в воде. Растворимость веществ в воде. Концентрация растворов. Массовая доля растворенного вещества в растворе.

Основные классы неорганических соединений

Моль — единица количества вещества. Молярная масса. Вычисления по химическим уравнениям. Закон Авогадро. Молярный объем газов. Относительная плотность газов. Объемные отношения газов при химических реакциях.

Оксиды. Классификация. Номенклатура. Физические свойства оксидов. Химические свойства оксидов. Получение и применение оксидов. Основания. Классификация. Номенклатура. Физические свойства оснований. Получение оснований. Химические свойства оснований. Реакция нейтрализации. Кислоты. Классификация. Номенклатура. Физические свойства кислот. Получение и применение кислот. Химические свойства кислот. Индикаторы. Изменение окраски индикаторов в различных средах. Соли. Классификация. Номенклатура. Физические свойства солей. Получение и применение солей. Химические свойства солей. Генетическая связь между классами неорганических соединений. Проблема безопасного использования веществ и химических реакций в повседневной жизни. Токсичные, горючие и взрывоопасные вещества. Бытовая химическая грамотность.

Периодический закон и периодическая система химических элементов Д.И. Менделеева. Строение атома.

Периодический закон Д.И. Менделеева. Периодическая система химических элементов Д.И. Менделеева. Строение атома: ядро, энергетический уровень. Состав ядра атома: протоны,

нейтроны. Изотопы. Физический смысл атомного (порядкового) номера химического элемента, номера группы и периода периодической системы. Строение энергетических уровней атомов первых 20 химических элементов периодической системы Д.И. Менделеева. Закономерности изменения свойств атомов химических элементов и их соединений на основе положения в периодической системе Д.И. Менделеева и строения атома. Значение Периодического закона Д.И. Менделеева.

Электроотрицательность атомов химических элементов. Ковалентная химическая связь: неполярная и полярная. Понятие о водородной связи и ее влиянии на физические свойства веществ на примере воды. Ионная связь. Металлическая связь. Типы кристаллических решеток (атомная, молекулярная, ионная, металлическая). Зависимость физических свойств веществ от типа кристаллической решетки.

Химические реакции

Понятие о скорости химической реакции. Факторы, влияющие на скорость химической реакции. Понятие о катализаторе. Классификация химических реакций по различным признакам: числу и составу исходных и полученных веществ; изменению степеней окисления атомов химических элементов; поглощению или выделению энергии. Электролитическая диссоциация. Электролиты и неэлектролиты. Ионы. Катионы и анионы. Реакции ионного обмена. Условия протекания реакций ионного обмена. Электролитическая диссоциация кислот, щелочей и солей. Степень окисления. Определение степени окисления атомов химических элементов в соединениях. Окислитель. Восстановитель. Сущность окислительно-восстановительных реакций.

Неметаллы IV – VII групп и их соединения

Положение неметаллов в периодической системе химических элементов Д.И. Менделеева. Общие свойства неметаллов. Галогены: физические и химические свойства. Соединения галогенов: хлороводород, хлороводородная кислота и ее соли. Сера: физические и химические свойства. Соединения серы: сероводород, сульфиды, оксиды серы. Серная, сернистая и сероводородная кислоты и их соли. Азот: физические и химические свойства. Аммиак. Соли аммония. Оксиды азота. Азотная кислота и ее соли. Фосфор: физические и химические свойства. Соединения фосфора: оксид фосфора (V), ортофосфорная кислота и ее соли. Углерод: физические и химические свойства. Аллотропия углерода: алмаз, графит, карбин, фуллерены. Соединения углерода: оксиды углерода (II) и (IV), угольная кислота и ее соли. Кремний и его соединения.

Металлы и их соединения

Положение металлов в периодической системе химических элементов Д.И. Менделеева. Металлы в природе и общие способы их получения. Общие физические свойства металлов. Общие химические свойства металлов: реакции с неметаллами, кислотами, солями. Электрохимический ряд напряжений металлов. Щелочные металлы и их соединения. Щелочноземельные металлы и их соединения. Алюминий. Амфотерность оксида и гидроксида алюминия. Железо. Соединения железа и их свойства: оксиды, гидроксиды и соли железа (II и III).

Органическая химия

Первоначальные сведения о строении органических веществ. Углеводороды: метан, этан, этилен. Источники углеводородов: природный газ, нефть, уголь. Кислородсодержащие соединения: спирты (метанол, этанол, глицерин), карбоновые кислоты (уксусная кислота, аминоуксусная кислота, стеариновая и олеиновая кислоты). Биологически важные вещества: жиры, глюкоза, белки. Химическое загрязнение окружающей среды и его последствия.

6. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ С ОПРЕДЕЛЕНИЕМ ОСНОВНЫХ ВИДОВ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ

Содержание учебного предмета «Химия 8 класс»

Основные виды учебной деятельности

Раздел 1. Первоначальные химические понятия (21 ч)

- 1. Химия как часть естествознания. Вещества и их свойства. 2. Методы познания в химии: наблюдение, эксперимент. 3. Практическая работа 1. Приёмы безопасной работы с оборудованием и веществами. Строение пламени. 4. Чистые вещества и смеси. Способы разделения смесей. 5. Практическая работа 2. Очистка загрязнённой поваренной соли. 6. Физические и химические явления.
- 7. Атомы, молекулы и ионы. 8. Вещества молекулярного и немолекулярного строения. Кристаллические решётки. 9. Простые и сложные вешества. Химический элемент. 10. Язык химии. Знаки химических элементов. Относительная атомная масса. 11. Закон постоянства состава вешеств. 12. Химические формулы. Относительная молекулярная масса. Качественный и количественный состав вещества. 13. Массовая доля химического элемента в соединении. 14. Валентность химических элементов. Определение валентности элементов по формуле бинарных соединений. 15. Составление химических формул бинарных соединений по валентности. 16. Атомно - молекулярное учение17. Закон сохранения массы веществ. 18. Химические уравнения. 19. Типы химических реакций. 20. Повторение и обобщение по теме «Первоначальные химические понятия». 21.Контрольная работа№1 по теме: «Первоначальные

химические понятия».

Демонстрации. Лабораторное оборудование и приёмы безопасной работы с ним. Способы очистки веществ: кристаллизация, дистилляция, хроматография. Нагревание сахара. Нагревание парафина. Горение парафина. Взаимодействие растворов: карбоната натрия и соляной кислоты, сульфата меди (П) и гидроксида натрия. Взаимодействие свежеосаждённого гидроксида меди (П) с раствором глюкозы при обычных условиях и при нагревании. Лабораторные опыты. Рассмотрение веществ с различными физическими свойствами. Разделение смеси с помощью магнита. Примеры физических и химических явлений. Разложение основного карбоната меди(II). Реакции замещения меди железом. Примеры простых и сложных веществ в разных агрегатных состояниях. Модели кристаллических решёток. Опыты, подтверждающие закон сохранения массы веществ. Расчётные задачи. Вычисление относительной молекулярной массы вещества по его формуле. Вычисление массовой доли элемента в химическом соединении. Установление простейшей формулы вещества по массовым долям

Различать предметы изучения естественных наук. Наблюдать свойства веществ и их изменения в ходе химических реакций. Учиться проводить химический эксперимент. Соблюдать правила техники безопасности. Уметь оказывать первую помощь при отравлениях, ожогах и травмах, связанных с реактивами и лабораторным оборудованием. Знакомиться с лабораторным оборудованием. Изучать строение пламени, выдвигая гипотезы и проверяя их экспериментально. Уметь разделять смеси методами отстаивания, фильтрования и выпаривания. Определять признаки химических реакций

Различать понятия «атом», «молекула», «химический элемент», «ион», «элементарные частицы». Различать понятия «вещества молекулярного строения» и «вещества немолекулярного строения». Определять понятие «кристаллическая решётка». Определять валентность атомов в бинарных соединениях. Определять состав простейших соединений по их химическим формулам. Изображать простейшие химические реакции с помощью химических уравнений. Составлять формулы бинарных соединений по известной валентности элементов. Моделировать строение молекул метана, аммиака, водорода, хлороводорода. Рассчитывать относительную молекулярную массу вещества по его формуле. Рассчитывать массовую долю химического элемента в соединении. Рассчитывать молярную массу вещества. Устанавливать простейшие формулы веществ по массовым долям элементов. Вычислять по химическим уравнениям массу или количество вещества по известной массе или количеству одного из вступающих в реакцию или получающихся веществ. Пользоваться информацией из других источников для подготовки кратких сообщений. Готовить презентации по теме

элементов. Вычисления по химическим уравнениям массы или количества вещества по известной массе или количеству одного из вступающих в реакцию или получающихся веществ

Раздел 2. Кислород. Горение (5 ч)

1. Кислород, его общая характеристика и нахождение в природе. Получение кислорода и его физические свойства. 2. Химические свойства кислорода. Горение и медленное окисление. Оксиды. Применение кислорода. 3. Практическая работа 3. Получение и свойства кислорода. 4. Озон. Аллотропия кислорода. 5. Воздух и его состав. Защита атмосферного воздуха от загрязнений. Демонстрации. Физические свойства кислорода. Получение и собирание кислорода методом вытеснения воздуха и воды. Условия возникновения и прекращения горения. Определение состава воздуха. Лабораторные опыты. Ознакомление с образцами оксидов

Исследовать свойства изучаемых веществ. Наблюдать физические и химические превращения изучаемых веществ. Распознавать опытным путём кислород. Описывать химические реакции, наблюдаемые в ходе демонстрационного и лабораторного эксперимента. Делать выводы из результатов проведённых химических опытов. Участвовать в совместном обсуждении результатов опытов. Оказывать первую помощь при отравлениях, ожогах и травмах, связанных с реактивами и лабораторным оборудованием. Составлять формулы оксидов по известной валентности элементов. Записывать простейшие уравнения химических реакций. Пользоваться информацией из других источников для подготовки кратких сообщений. Готовить презентации по теме

Раздел 3. Водород (3 ч)

1. Водород, его общая характеристика и нахождение в природе. Получение водорода и его физические свойства. Меры безопасности при работе с водородом. 2. Химические свойства водорода. Применение водорода. З. Практическая работа 4. Получение водорода и изучение его свойств. Демонстрации. Получение водорода в аппарате Киппа. Проверка водорода на чистоту. Горение водорода на воздухе и в кислороде. Собирание водорода методом вытеснения воздуха и воды. Лабораторные опыты. Получение водорода и изучение его свойств. Взаимодействие водорода с оксидом меди (II)

Исследовать свойства изучаемых веществ. Наблюдать физические и химические превращения изучаемых веществ. Описывать химические реакции, наблюдаемые в ходе демонстрационного и лабораторного эксперимента. Распознавать опытным путём водород. Соблюдать правила техники безопасности. Делать выводы из результатов проведённых химических опытов. Участвовать в совместном обсуждении результатов опытов. Записывать простейшие уравнения химических реакций. Пользоваться информацией из других источников для подготовки кратких сообщений. Готовить презентации по теме

Раздел 4. Вода. Растворы (8 ч)

1. Вода. Методы определения состава воды — анализ и синтез. Вода в природе и способы её очистки. Аэрация воды. 2. Физические и химические свойства воды. З. Вода как растворитель. Растворы. Насыщенные и ненасыщенные растворы. Растворимость веществ в воде. 4. Массовая доля растворённого вещества. 5. Решение расчетных задач. «Нахождение массовой доли растворенного вещества в растворе. Вычисление массы растворенного вещества и воды для приготовления раствора определенной концентрации». 6. Практическая работа 5 Приготовление растворов солей с определённой массовой долей растворённого вещества. 7. Повторение и обобщение по темам «Кислород», «Водород», «Вода. Растворы». 8. Контрольная работа по темам: «Кислород», «Водород», «Растворы. Вода». Демонстрации. Анализ воды. Синтез воды. Взаимодействие воды с натрием, кальцием, магнием, оксидом кальция, оксидом углерода(1У), оксидом фосфора(У) и испытание

Исследовать свойства изучаемых веществ. Наблюдать физические и химические превращения изучаемых веществ. Описывать химические реакции, наблюдаемые в ходе демонстрационного и лабораторного эксперимента. Делать выводы из результатов проведённых химических опытов. Участвовать в совместном обсуждении результатов опытов. Записывать простейшие уравнения химических реакций. Вычислять массовую долю растворённого вещества в растворе, массу растворённого вещества и воды для приготовления раствора определённой концентрации. Готовить растворы с определённой массовой долей растворённого вещества. Пользоваться информацией из других источников для подготовки кратких сообщений

полученных растворов индикатором. Расчётные задачи. Нахождение массовой доли растворённого вещества в растворе. Вычисление массы растворённого вещества и воды для приготовления раствора определённой концентрации

Раздел 5. Основные классы неорганических соединений (18 ч)

- 1. Моль единица количества вещества. Молярная масса. 2. Вычисления по химическим уравнениям. 3.Закон Авогадро. Молярный объём газов. 4. Относительная плотность газов. 5.Объемные отношения газов при химических реакциях. Расчётные задачи.
- 6. Оксиды: классификация, номенклатура, свойства оксидов, получение, применение. 7. Гидроксиды. Основания: классификация, номенклатура получение.
- 8. Химические свойства оснований. Реакция нейтрализации. Кислотно- основные индикаторы: фенолфталеин, метиловый оранжевый, лакмус. Окраска индикаторов в щелочной, кислой и нейтральной средах. 9. Амфотерные оксиды и гидроксиды. 10. Кислоты. Состав. Классификация. Номенклатура. 11. Химические свойства. Кислотноосновные индикаторы: метиловый оранжевый, лакмус. Окраска индикаторов в кислой и нейтральной средах. 12. Соли: состав, классификация, номенклатура, способы получения солей. 13. Свойства солей. Растворимость солей в воде. 14. Генетическая связь между основными классами неорганических соединений. 15. Практическая работа 5. Решение экспериментальных задач по теме «Основные классы неорганических соединений». 16. Повторение и обобщение темы «Основные классы неорганических соединений». 17. Контрольная работа по теме «Основные классы неорганических соединений». Демонстрации. Образцы оксидов, кислот, оснований и солей. Нейтрализация щёлочи кислотой в присутствии индикатора. Лабораторные опыты. Опыты, подтверждающие химические

Использовать внутри- и межпредметные связи. Вычислять молярный объём газов, относительную плотность газов, объёмные отношения газов при химических реакциях. Использовать приведённые в учебниках и задачниках алгоритмы решения задач

Исследовать свойства изучаемых веществ. Наблюдать физические и химические превращения изучаемых веществ. Описывать химические реакции, наблюдаемые в ходе демонстрационного и лабораторного эксперимента. Соблюдать правила техники безопасности. Делать выводы из результатов проведённых химических опытов. Участвовать в совместном обсуждении результатов опытов. Классифицировать изучаемые вещества по составу и свойствам. Составлять формулы оксидов, кислот, оснований, солей. Характеризовать состав и свойства веществ основных классов неорганических соединений. Записывать простейшие уравнения химических реакций

Раздел 6. Периодический закон и периодическая система химических элементов Д. И. Менделеева. Строение атома (15ч)

1.Классификация химических элементов. Понятия о группах сходных элементов.

Опыты, подтверждающие химические свойства солей.

2. Периодический закон Д. И. Менделеева.

свойства оксидов. Опыты, подтверждающие химические свойства оснований. Опыты, подтверждающие химические свойства кислот.

- 3. Периодическая таблица химических элементов (короткая форма): А- и Б-группы, периоды.
- 4. Строение атома. Состав атомных ядер. Изотопы. Химический элемент — вид атома с одинаковым зарядом ядра.
- 5. Расположение электронов по энергетическим уровням. Современная формулировка периодического закона.
- 6. Значение периодического закона. Научные

Классифицировать изученные химические элементы и их соединения. Сравнивать свойства веществ, принадлежащих к разным классам; химические элементы разных групп. Устанавливать внутри- и межпредметные связи. Формулировать периодический закон Д. И. Менделеева и раскрывать его смысл. Описывать и характеризовать структуру таблицы «Периодическая система химических элементов Д. И. Менделеева» (короткая форма). Различать периоды, группы, А- и Б-группы. Определять понятия «химический элемент», «порядковый номер», «массовое число», «изотоп»,

достижения Д. И. Менделеева.

- 7. Повторение и обобщение по теме: Периодический закон и периодическая система химических элементов Д. И. Менделеева. Строение атома.
- 8. Электроотрицательность химических элементов.
- 9. Ковалентная связь. Полярная и неполярная ковалентные связи.
- 10. Ионная связь. 11. Повторение и обобщение по теме: «Строение веществ. Химическая связь».
- 12. Контрольная работа №4 по темам:
- «Периодический закон и периодическая система химических элементов Д. И. Менделеева. Строение атома. Строение вещества».
- 13. Обобщение, систематизация и коррекция знаний учащихся за курс химии 8 класса.
- 14. Итоговая контрольная работа.
- 15. Степень окисления.
- 16. Окислительно восстановительные реакции.
- 17. Окислительно восстановительные реакции.
- 18. Итоговое повторение за курс 8 класса.

Лабораторные опыты. Составление моделей молекул и кристаллов веществ с различным видом химической связи.

«относительная атомная масса», «электронная оболочка», «электронный слой». Объяснять физический смысл порядкового номера химического элемента, номеров группы и периода, к которым элемент принадлежит в периодической системе Д. И. Менделеева; закономерности изменения свойств элементов в пределах малых периодов и А-групп. Определять число протонов, нейтронов, электронов у атомов химических элементов, используя периодическую таблицу. Моделировать строение атома, используя компьютер. Составлять схемы строения атомов первых 20 элементов периодической системы элементов. Характеризовать химические элементы на основе их положения в периодической системе и особенностей строения их атомов. Делать умозаключения о характере изменения свойств химических элементов с увеличением зарядов атомных ядер. Конкретизировать понятия «химическая связь». «кристаллическая решётка». Определять понятия «ковалентная неполярная связь», «ковалентная полярная связь», «ионная связь», «степень окисления». Моделировать строение веществ с кристаллическими решётками разного типа. Определять тип химической связи в соединениях на основании химической формулы. Определять степень окисления элементов в соединениях. Составлять формулы веществ по известным степеням окисления элементов. Устанавливать внутри- и межпредметные связи. Составлять сравнительные и обобщающие таблицы, схемы. Участвовать в совместном обсуждении результатов опытов. Делать выводы из результатов проведённых химических опытов

Содержание учебного предмета «Химия 9 класс»

Раздел 1. Повторение (3 ч)

- 1.Периодический закон и П.С.Х.Э. Д.И. Менделеева.
- 2. Химическая связь. Строение вещества. Типы кристаллических решеток.
- 3. Классификация неорганических веществ.

Классифицировать изученные химические элементы и их соединения. Сравнивать свойства веществ, принадлежащих к разным классам; химические элементы разных групп. Устанавливать внутри- и межпредметные связи. Формулировать периодический закон Д. И. Менделеева и раскрывать его смысл. Описывать и характеризовать структуру таблицы «Периодическая система химических элементов Д. И. Менделеева». Конкретизировать понятия «химическая связь», «кристаллическая решётка». Определять понятия «ковалентная неполярная связь», «ковалентная полярная связь», «ионная связь», «степень окисления». Классифицировать изучаемые вещества по составу и свойствам. Составлять формулы оксидов, кислот, оснований, солей. Характеризовать состав и свойства веществ основных классов неорганических соединений.

Основные виды учебной деятельности

Раздел 2. Классификация химических реакций (5 ч)

1.Окислительно-восстановительные реакции. 2. Тепловой эффект химических реакций. Экзо- и эндотермические реакции. 3. Скорость химических реакций.4. Практическая работа1. Изучение влияния условий проведения химической реакции на ее скорость. 5. Химическое равновесие. Условия его смещения.

Демонстрации. Примеры экзо- и эндотермических реакций. Взаимодействие цинка с соляной и уксусной кислотами. Взаимодействие гранулированного цинка и цинковой пыли с соляной кислотой. Взаимодействие оксида меди(Н) с серной кислотой разной концентрации при разных температурах. Горение угля в концентрированной азотной кислоте. Горение серы в расплавленной селитре. Лабораторные опыты. Примеры экзо- и эндотермических реакций. Расчётные задачи. Вычисления по термохимическим уравнениям реакций

Распознавать окислительно-восстановительные реакции по уравнениям реакций. Определять по уравнению реакции окислитель, восстановитель, процесс окисления, восстановления. Наблюдать и описывать химические реакции с помощью естественного языка и языка химии. Исследовать условия, влияющие на скорость химической реакции. Описывать условия, влияющие на скорость химической реакции. Проводить групповые наблюдения во время проведения лабораторных опытов. Участвовать в обсуждении результатов опытов. Составлять термохимические уравнения реакций. Вычислять тепловой эффект реакции по термохимическому уравнению

Раздел 3. Химические реакции в водных растворах (12 ч)

- 1.Сущность процесса электролитической диссоциации.2. Электролитическая диссоциация кислот, щелочей и солей. 3. Слабые и сильные электролиты. Степень диссоциации.
- 4. Реакции ионного обмена. 5. Гидролиз солей.
- 6. Практическая работа 2. Решение экспериментальных задач по теме «Свойства кислот, оснований и солей как электролитов».
- 7. Контрольная работа №1 по теме: «Электролитическая диссоциация».
- 8. Характеристика галогенов. 9. Хлор.
- 10. Хлороводород: получение и свойства.
- 11. Соляная кислота и её соли. 12. Практическая работа 3. Получение соляной кислоты и изучение ее свойств.

Демонстрации. Испытание растворов веществ на электрическую проводимость. Движение ионов в электрическом поле. Лабораторные опыты. Реакции между растворами электролитов. Опыты по выявлению условий течения реакций обмена в растворах электролитов. Вытеснение галогенами друг друга из растворов их соединений. Взаимодействие соляной кислоты с магнием, оксидом магния, карбонатом магния.

Обобщать знания о растворах. Проводить наблюдения за поведением веществ в растворах, за химическими реакциями, протекающими в растворах. Давать определения понятий «электролит», неэлектролит», «электролитическая диссоциация». Конкретизировать понятие «ион». Обобщать понятия «катион», «анион». Исследовать свойства растворов электролитов. Описывать свойства веществ в ходе демонстрационного и лабораторного эксперимента. Характеризовать условия течения реакций в растворах электролитов до конца. Определять возможность протекания реакций ионного обмена. Характеризовать галогены на основе их положения в периодической системе и особенностей строения их атомов. Объяснять закономерности изменения свойств галогенов с увеличением атомного номера. Распознавать опытным путём соляную кислоту и её соли, а также бромиды и иодиды. Использовать приобретённые знания и умения в практической деятельности и повседневной жизни с целью безопасного обращения с веществами и материалами и экологически грамотного поведения в окружающей среде. Проводить групповые наблюдения во время проведения лабораторных опытов. Соблюдать правила техники безопасности. Обсуждать в группах результаты опытов. Объяснять сущность реакций ионного обмена. Распознавать реакции ионного обмена по уравнениям реакций. Составлять ионные уравнения реакций. Составлять сокращённые ионные уравнения реакций

Раздел 4. Кислород и сера (5 ч)

1. Характеристика кислорода и серы. Сера. Физические и химические свойства серы. Применение. 2. Сероводород. Сульфиды. 3. Оксид

Характеризовать элементы IVA-группы (подгруппы кислорода) на основе их положения в периодической системе и особенностей строения их атомов.

серы (IV). Сернистая кислота 4. Оксид серы (VI). Серная кислота. 5. Практическая работа 4. Решение экспериментальных задач по теме «Кислород и сера». Демонстрации. Аллотропия кислорода и серы. Образцы природных сульфидов и сульфатов. Лабораторные опыты. Ознакомление с образцами серы и её природных соединений. Качественная реакция на сульфид- ионы. Качественная реакция на сульфит- ионы. Взаимодействие серной кислоты с магнием, оксидом магния, карбонатом магния. Распознавание сульфат- ионов в растворе. Расчётные задачи. Вычисления по химическим уравнениям массы, объёма и количества вещества одного из продуктов реакции по массе исходного вещества. объёму или количеству вещества, содержащего определённую долю примесей

Объяснять закономерности изменения свойств элементов IVA-группы. Характеризовать аллотропию кислорода и серы как одну из причин многообразия веществ. Описывать свойства веществ в ходе демонстрационного и лабораторного эксперимента. Соблюдать технику безопасности. Оказывать первую помощь при отравлениях, ожогах и травмах, связанных с реактивами и лабораторным оборудованием. Определять принадлежность веществ к определённому классу соединений. Сопоставлять свойства разбавленной и концентрированной серной кислоты. Записывать уравнения реакций в электронно- ионном виде. Распознавать опытным путём растворы кислот, сульфиды, сульфиты, сульфаты. Использовать приобретённые знания и умения в практической деятельности и повседневной жизни с целью безопасного обращения с веществами и материалами и экологически грамотного поведения в окружающей среде. Вычислять по химическим уравнениям массу, объем и количество вещества одного из продуктов реакции по массе исходного вещества, объёму или количеству вещества, содержащего определённую долю примесей. Готовить компьютерные презентации по теме

Раздел 5. Азот и фосфор (8 ч)

1. Характеристика азота и фосфора. Физические и химические свойства азота. 2. Аммиак. Физические и химические свойства. Получение и применение. 3. Практическая работа 5. Получение аммиака и изучение его свойств. 6. Соли аммония. 7. Азотная кислота. 8. Соли азотной кислоты. 9.Фосфор. 10. Оксид фосфора(У). Фосфорная кислота и её соли. Демонстрации. Получение аммиака и его растворение в воде. Образцы природных нитратов и фосфатов. Лабораторные опыты. Распознавание солей аммония.

Характеризовать элементы VA-группы (подгруппы азота) на основе их положения в периодической системе и особенностей строения их атомов. Объяснять закономерности изменения свойств элементов VA-группы. Характеризовать аллотропию фосфора как одну из причин многообразия веществ. Описывать свойства веществ в ходе демонстрационного и лабораторного экспериментов. Соблюдать технику безопасности. Оказывать первую помощь при отравлениях, ожогах и травмах, связанных с реактивами и лабораторным оборудованием. Устанавливать принадлежность веществ к определённому классу соединений. Сопоставлять свойства разбавленной и концентрированной азотной кислоты. Составлять уравнения ступенчатой диссоциации на примере молекулы фосфорной кислоты. Записывать уравнения реакций в электронно- ионном виде. Распознавать опытным путём аммиак, растворы кислот, нитрат- и фосфат- ионы, ион аммония. Использовать приобретённые знания и умения в практической деятельности и повседневной жизни с целью безопасного обращения с веществами и материалами и экологически грамотного поведения в окружающей среде. Вычислять массовую долю растворённого вещества в растворе. Пользоваться информацией из других источников для подготовки кратких сообщений. Готовить компьютерные презентации по теме

Раздел 6. Углерод и кремний (10 ч)

1. Характеристика углерода и кремния. Аллотропия углерода. 2. Химические свойства углерода. Адсорбция. 3. Оксид углерода (II) - угарный газ. 4. Оксид углерода (IV) - углекислый газ. 5. Угольная кислота и ее соли. Круговорот углерода в природе. Практическая работа 6. Получение оксида углерода(1У) и изучение его свойств. Распознавание карбонатов. 7. Кремний. Оксид кремния (IV). 8. Кремниевая кислота и ее соли. Стекло. Цемент. 9. Обобщение и повторение материала тем: «Кислород и сера. Азот и фосфор. Углерод и кремний».

10. Контрольная работа №2 по темам: «Кислород и сера. Азот и фосфор.

Демонстрации. Кристаллические решётки алмаза и графита. Образцы природных карбонатов и силикатов. Лабораторные опыты. Проведение качественной реакции на углекислый газ. Ознакомление со свойствами и взаимопревращениями карбонатов и гидрокарбонатов. Качественные реакции на карбонат-ионы

Характеризовать элементы IVA-группы (подгруппы углерода) на основе их положения в периодической системе и особенностей строения их атомов. Объяснять закономерности изменения свойств элементов IVA-группы. Характеризовать аллотропию углерода как одну из причин многообразия веществ. Описывать свойства веществ в ходе демонстрационного и лабораторного эксперимента. Соблюдать технику безопасности. Сопоставлять свойства оксидов углерода и кремния, объяснять причину их различия. Устанавливать по химической формуле принадлежность веществ к определённому классу соединений. Доказывать кислотный характер высших оксидов углерода и кремния. Записывать уравнения реакций в электронно-ионном виде. Осуществлять взаимопревращения карбонатов и гидрокарбонатов. Распознавать опытным путём углекислый газ. карбонат- и силикат-ионы. Использовать приобретённые знания и умения в практической деятельности и повседневной жизни с целью безопасного обращения с веществами и материалами и экологически грамотного поведения в окружающей среде

Раздел 7. Металлы (17 ч)

- 1. Характеристика металлов. 2. Нахождение металлов в природе и общие способы их получения.
- 3. Химические свойства металлов. Электрохимический ряд напряжений металлов. 4. Сплавы. 5. Щелочные металлы. 6. Магний. Шелочноземельные металлы.
- 7. Кальций и его соединения. Жесткость воды и способы ее устранения. 8.Алюминий. 9. Важнейшие соединения алюминия. 10. Практическая работа 6. Решение экспериментальных задач по теме «Металлы и их соединения». 11.Железо.12. Соединения железа. 13. Практическая работа 7. Решение экспериментальных задач по теме «Металлы и их соединения».
- 14. Обобщение и повторение материала темы: «Общие свойства металлов».
- 15. Контрольная работа №3 по теме: «Общие свойства металлов».
- 16. Обобщение, систематизация и коррекция знаний учащихся за курс химии 9 класса.
- 17. Итоговая контрольная работа.

Демонстрации. Образцы важнейших соединений натрия и калия, природных соединений магния, кальция и алюминия, железных руд. Взаимодействие щелочных, щелочноземельных металлов и алюминия с водой. Сжигание железа в кислороде и хлоре. Лабораторные опыты. Ознакомление со свойствами и взаимопревращениями карбонатов и гидрокарбонатов. Получение гидроксида алюминия и взаимодействие его с кислотами и щелочами. Получение гидроксида алюминия и взаимодействие

Характеризовать металлы на основе их положения в периодической системе и особенностей строения их атомов. Объяснять закономерности изменения свойств металлов по периоду и в А-группах. Исследовать свойства изучаемых веществ. Объяснять зависимость физических свойств металлов от вида химической связи между их атомами. Наблюдать и описывать химические реакции с помощью естественного языка и языка химии. Наблюдать демонстрируемые и самостоятельно проводимые опыты. Описывать свойства изучаемых веществ на основе наблюдений за их превращениями. Доказывать амфотерный характер оксидов и гидроксидов алюминия и железа. Сравнивать отношение изучаемых металлов и оксидов металлов к

Сравнивать отношение гидроксидов натрия и алюминия к растворам кислот и щелочей. Распознавать опытным путём гидроксид- ионы, ионы Fe²⁺ и Fe³⁺. Соблюдать технику безопасности, правильно обращаться с химической посудой и лабораторным оборудованием. Записывать уравнения реакций в электронно-ионном виде. Обобщать знания и делать выводы о закономерностях изменений свойств металлов в периодах и группах. Прогнозировать свойства неизученных элементов и их соединений на основе знаний о периодическом законе. Использовать приобретённые знания и умения в практической деятельности и повседневной жизни с целью безопасного обращения с веществами и материалами и экологически грамотного поведения

его с кислотами и щелочами. Качественные реакции на ионы железа.

Расчётные задачи. Вычисления по химическим уравнениям массы, объёма или количества вещества одного из продуктов реакции по массе исходного вещества, объёму или количеству вещества, содержащего определённую долю примесей

в окружающей среде. Вычислять по химическим уравнениям массу, объём или количество вещества одного из продуктов реакции по массе исходного вещества, объёму или количеству вещества, содержащего определённую долю примесей. Пользоваться информацией из других источников для подготовки кратких сообщений. Готовить компьютерные презентации по теме

Раздел 8. Органическая химия (8 ч)

- 1.Первоначальные сведения о строении органических веществ. 2. Упрощенная классификация органических соединений. 3. Предельные углеводороды. Метан, этан. 4. Непредельные углеводороды. Этилен. Ацетилен. Полимеры.
- 5. Производные углеводородов. Спирты.
- 6. Карбоновые кислоты. Сложные эфиры. Жиры.
- 7. Углеводы. 8. Аминокислоты. Белки.

Использовать внутри- и межпредметные связи. Составлять молекулярные и структурные формулы углеводородов. Определять принадлежность вещества к определённому классу органических соединений. Записывать уравнения реакций замещения и присоединения с участием органических веществ. Наблюдать демонстрируемые опыты. Описывать свойства изучаемых веществ на основе наблюдений за их превращениями.

Перечень контрольных, лабораторных и практических работ по химии

8 класс (учебник Г. Е. Рудзитис; Ф.Г. Фельдман)

- 1. Контрольная работа№1 по теме: «Первоначальные химические понятия».
- 2. Контрольная работа№2 по темам: «Кислород», «Водород», «Растворы. Вода».
- 3. Контрольная работа№3 по теме: «Основные классы неорганических соединений».
- 4. Контрольная работа №4 по темам: «Периодический закон и периодическая система химических элементов Д. И. Менделеева. Строение атома. Строение вещества».
- 5. Итоговая контрольная работа.
- 6. Л/О №1 Рассмотрение веществ с различными физическими свойствами.
- 7. Практическая работа№1 «Приемы безопасной работы с оборудованием и веществами. Строение пламени».
- 8. Л/О №2Разделение смесей с помощью магнита.
- 9. Практическая работа№2 «Очистка загрязненной поваренной соли».
- 10. Л/О №3,4 Примеры физических и химических явлений.
- 11. Л/О №5,6 Разложение основного карбоната меди(II). Реакции замещения меди железом.
- 12. Л/О №7 Ознакомление с образцами оксидов.
- 13. Практическая работа№3 «Получение и свойства кислорода».
- 14. Л/О №8 Получение водорода и изучение его свойств.
- 15. Л/О №9 Взаимодействие водорода с оксидом меди (II).
- 16. Практическая работа№4 «Получение водорода и исследование его свойств».
- 17. Практическаяработа№5 «Приготовление растворов солей с определенной массовой долей растворенного вещества».
- 18. Л/О №10 Опыты, подтверждающие химические свойства оксидов.
- 19. Л/О №11 Опыты, подтверждающие химические свойства оснований.
- 20. Л/О №12 Опыты, подтверждающие химические свойства амфотерных гидроксидов.
- 21. Л/О №13 Опыты, подтверждающие химические свойства кислот.
- 22. Л/О №14 Опыты, подтверждающие химические свойства солей.
- 23. Практическая работа №6.Решение экспериментальных задач по теме «Важнейшие классы неорганических соединений»
- 24. Л/О №15 Составление моделей молекул и кристаллов веществ с различным видом химической связи.

9 класс (учебник Г. Е. Рудзитис; Ф.Г. Фельдман)

«Неорганическая химия»

- 1. Контрольная работа №1 по теме: «Электролитическая диссоциация».
- 2. Контрольная работа №2 по темам: «Кислород и сера. Азот и фосфор. Углерод и кремний».
- 3. Контрольная работа №3 по теме: «Общие свойства металлов».
- 4. Итоговая контрольная работа.
- 5. Л/О №1 Примеры экзо- и эндо-термических реакций.
- 6. Практическая работа №1. Изучение влияния условий проведения химической реакции на ее скорость.
- 7. Л/О №2 Реакции между растворами электролитов. Опыты по выявлению условий течения реакций обмена в растворах электролитов.
- 8. Практическая работа №2. Решение экспериментальных задач по теме «Свойства кислот, оснований и солей как электролитов».
- 9. Л/О №3 Вытеснение галогенами друг друга из растворов их соединений.
- 10. Л/О №4 Взаимодействие соляной кислоты с магнием, оксидом магния, карбонатом магния.
- 11. Практическая работа №3. Получение соляной кислоты и изучение ее свойств.
- 12. Л/О №5 Ознакомление с образцами серы и её природных соединений.
- 13. Л/О №6 Качественная реакция на сульфид- ионы.
- 14. Л/О №7 Качественная реакция на сульфит- ионы.
- 15. Л/О №8,9 Взаимодействие серной кислоты с магнием, оксидом магния, карбонатом магния. Распознавание сульфат- ионов в растворе.
- 16. Практическая работа №4. Решение экспериментальных задач по теме «Кислород и сера».
- 17. Практическая работа №5. Получение аммиака и изучение его свойств.
- 18. Л/О №10 Распознавание солей аммония.
- 19. Л/О №11 Проведение качественной реакции на углекислый газ.
- 20. Л/О№12 Качественная реакция на карбонат- ионы.
- 21. Практическая работа №6. Получение оксида углерода (IV) и изучение его свойств. Распознавание карбонатов.
- 22. Л/О№13 Изучение образцов металлов.
- 23. Л/О №14 Взаимодействие металлов с растворами солей.
- 24. Л/О №15 Ознакомление со свойствами и взаимопревращениями карбонатов и гидрокарбонатов.
- 25. Л/О №16 Получение гидроксида алюминия и взаимодействие его с кислотами и щелочами.
- 26. Практическая работа №6. Решение экспериментальных задач по теме «Металлы и их соединения».
- 27. Л/О №17 Качественные реакции на ионы железа.
- 28. Практическая работа №7.Решение экспериментальных задач по теме «Металлы и их соединения».

7. КРИТЕРИИ И НОРМА ОЦЕНКИ ЗНАНИЙ И УМЕНИЙ ПО ХИМИИ

Оценка устного ответа.

Оценка «5» ставится, если ученик:

- 1. Показывает глубокое и полное знание и понимание всего объема программного материала; полное понимание сущности рассматриваемых понятий, явлений и закономерностей, теорий, взаимосвязей.
- 2. Умеет составить полный и правильный ответ на основе изученного материала; выделять главные положения, самостоятельно подтверждать ответ конкретными примерами, фактами; самостоятельно и аргументировано делать анализ, обобщать, выводы. Устанавливает

межпредметные (на основе ранее приобретенных знаний) и внутрипредметные связи, творчески применяет полученные знания в незнакомой ситуации. Последовательно, четко, связно, обоснованно и безошибочно излагает учебный материал: дает ответ в логической последовательности с использованием принятой терминологии; делает собственные выводы; формирует точное определение и истолкование основных понятий, законов, теорий; при ответе не повторяет дословно текст учебника; излагает материал литературным языком; правильно и обстоятельно отвечает на дополнительные вопросы учителя. Самостоятельно и пособия. рационально использует наглядные справочные материалы. дополнительную литературу, первоисточники; применяет систему условных обозначений при ведении записей, сопровождающих ответ; использует для доказательства выводы из наблюдений и опытов.

3. Самостоятельно, уверенно и безошибочно применяет полученные знания в решении проблем на творческом уровне; допускает не более одного недочета, который легко исправляет по требованию учителя; имеет необходимые навыки работы с приборами, чертежами, схемами и графиками, сопутствующими ответу; записи, сопровождающие ответ, соответствуют требованиям.

Оценка «4» ставится, если ученик:

- 1. Показывает знания всего изученного программного материала. Дает полный и правильный ответ на основе изученных теорий; допускает незначительные ошибки и недочеты при воспроизведении изученного материала, определения понятий, неточности при использовании научных терминов или в выводах и обобщениях из наблюдений и опытов; материал излагает в определенной логической последовательности, при этом допускает одну негрубую ошибку или не более двух недочетов и может их исправить самостоятельно при требовании или при небольшой помощи преподавателя; в основном усвоил учебный материал; подтверждает ответ конкретными примерами; правильно отвечает на дополнительные вопросы учителя.
- 2. Умеет самостоятельно выделять главные положения в изученном материале; на основании фактов и примеров обобщать, делать выводы, устанавливать внутрипредметные связи. Применяет полученные знания на практике в видоизмененной ситуации, соблюдает основные правила культуры устной и письменной речи, использует научные термины.
- 3. Не обладает достаточным навыком работы со справочной литературой, учебником, первоисточниками (правильно ориентируется, но работает медленно). Допускает негрубые нарушения правил оформления письменных работ.

Оценка «3» ставится, если ученик:

- 1. Усвоил основное содержание учебного материала, имеет пробелы в усвоении материала, не препятствующие дальнейшему усвоению программного материала; материал излагает несистематизированно, фрагментарно, не всегда последовательно.
- 2. Показывает недостаточную сформированность отдельных знаний и умений; выводы и обобщения аргументирует слабо, допускает в них ошибки.
- 3. Допустил ошибки и неточности в использовании научной терминологии, определения понятий дал недостаточно четкие; не использовал в качестве доказательства выводы и обобщения из наблюдений, фактов, опытов или допустил ошибки при их изложении.
- 4. Испытывает затруднения в применении знаний, необходимых для решения задач различных типов, при объяснении конкретных явлений на основе теорий и законов, или в подтверждении конкретных примеров практического применения теорий.
- 5. Отвечает неполно на вопросы учителя (упуская и основное), или воспроизводит содержание текста учебника, но недостаточно понимает отдельные положения, имеющие важное значение в этом тексте.

6. Обнаруживает недостаточное понимание отдельных положений при воспроизведении текста учебника (записей, первоисточников) или отвечает неполно на вопросы учителя, допуская одну - две грубые ошибки.

Оценка «2» ставится, если ученик:

- 1. Не усвоил и не раскрыл основное содержание материала; не делает выводов и обобщений.
- 2. Не знает и не понимает значительную или основную часть программного материала в пределах поставленных вопросов или имеет слабо сформированные и неполные знания и не умеет применять их к решению конкретных вопросов и задач по образцу.
- 3. При ответе (на один вопрос) допускает более двух грубых ошибок, которые не может исправить даже при помощи учителя.
- 4. Не может ответить ни на один их поставленных вопросов.
- 5. Полностью не усвоил материал.

Оценка выполнения практических (лабораторных) работ, опытов. Оценка «5» ставится, если ученик:

- 1. Правильно определил цель опыта и выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений.
- 2. Самостоятельно и рационально выбрал и подготовил для опыта необходимое оборудование, все опыты провел в условиях и режимах, обеспечивающих получение результатов и выводов с наибольшей точностью.
- 3. Научно грамотно, логично описал наблюдения и сформировал выводы из опыта. В представленном отчете правильно и аккуратно выполнил все записи, таблицы, рисунки, чертежи, графики, вычисления и сделал выводы.
- 4. Правильно выполнил анализ погрешностей (9-11 классы).
- 5. Проявляет организационно-трудовые умения (поддерживает чистоту рабочего места и порядок на столе, экономно использует расходные материалы).
- 6. Эксперимент осуществляет по плану с учетом техники безопасности и правил работы с материалами и оборудованием.

Оценка «4» ставится, если ученик выполнил требования к оценке «5», но:

- 1. Опыт проводил в условиях, не обеспечивающих достаточной точности измерений.
- 2. Было допущено два три недочета или более одной грубой ошибки и одного недочета.
- 3. Эксперимент проведен не полностью или в описании наблюдений из опыта ученик допустил неточности, выводы сделал неполные.

Оценка «3» ставится, если ученик:

- 1. Правильно определил цель опыта; работу выполняет правильно не менее чем наполовину, однако объем выполненной части таков, что позволяет получить правильные результаты и выводы по основным, принципиально важным задачам работы.
- 2. Подбор оборудования, объектов, материалов, а также работы по началу опыта провел с помощью учителя; или в ходе проведения опыта и измерений опыта были допущены ошибки в описании наблюдений, формулировании выводов.
- 3. Опыт проводился в нерациональных условиях, что привело к получению результатов с большей погрешностью; или в отчете были допущены в общей сложности не более двух ошибок (в записях единиц, измерениях, в вычислениях, графиках, таблицах, схемах, анализе погрешностей и т.д.) не принципиального для данной работы характера, но повлиявших на

- результат выполнения; не выполнен совсем или выполнен неверно анализ погрешностей (9-11 классы);
- 4. Допускает грубую ошибку в ходе эксперимента (в объяснении, в оформлении работы, в соблюдении правил техники безопасности при работе с материалами и оборудованием), которая исправляется по требованию учителя.

Оценка «2» ставится, если ученик:

- 1. Не определил самостоятельно цель опыта: выполнил работу не полностью, не подготовил нужное оборудование и объем выполненной части работы не позволяет сделать правильных выводов.
- 2. Опыты, измерения, вычисления, наблюдения производились неправильно.
- 3. В ходе работы и в отчете обнаружились в совокупности все недостатки, отмеченные в требованиях к оценке «3».
- 4. Допускает две (и более) грубые ошибки в ходе эксперимента, в объяснении, в оформлении работы, в соблюдении правил техники безопасности при работе с веществами и оборудованием, которые не может исправить даже по требованию учителя.
- 5. Полностью не сумел начать и оформить опыт; не выполняет работу; показывает отсутствие экспериментальных умений; не соблюдал или грубо нарушал требования безопасности труда.

Оценка самостоятельных письменных и контрольных работ.

Оценка "5" ставится, если ученик:

- 1. выполнил работу без ошибок и недочетов;
- 2. допустил не более одного недочета.

Оценка "4" ставится, если ученик выполнил работу полностью, но допустил в ней:

- 1. не более одной негрубой ошибки и одного недочета;
- 2. или не более двух недочетов.

Оценка "3" ставится, если ученик правильно выполнил не менее половины работы или допустил:

- 1. не более двух грубых ошибок;
- 2. или не более одной грубой и одной негрубой ошибки и одного недочета;
- 3. или не более двух-трех негрубых ошибок;
- 4. или одной негрубой ошибки и трех недочетов;
- 5. 5) или при отсутствии ошибок, но при наличии четырех-пяти недочетов.

Оценка "2" ставится, если ученик:

- 1. допустил число ошибок и недочетов превосходящее норму, при которой может быть выставлена оценка "3";
- 2. или если правильно выполнил менее половины работы.

Примечание. Учитель имеет право поставить ученику оценку выше той, которая предусмотрена нормами, если учеником оригинально выполнена работа. Оценки с анализом доводятся до сведения учащихся, как правило, на последующем уроке, предусматривается работа над ошибками, устранение пробелов.

Оценка тестовых работ.

При проверке подсчитывается количество верных ответов. Каждое правильно выполненное задание соответствует 1 баллу, если субтест выполнен неправильно или ученик не приступал к его выполнению - 0 баллов. Оценивание предлагается проводить по прилагаемой таблице.

% выполнения работы	Отметка
От 90% до 100%	5
От 75% до 89%	4
От 60% до 74%	3
До 60%	2

С целью выявления объективных знаний материала за неряшливо выполненную работу отметку не снижать.

Общая классификация ошибок

Грубыми считаются следующие ошибки:

- 1. незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
- 2. незнание наименований единиц измерения (физика, химия, математика, биология, география, черчение, трудовое обучение, ОБЖ);
- 3. неумение выделить в ответе главное;
- 4. неумение применять знания для решения задач и объяснения явлений;
- 5. неумение делать выводы и обобщения;
- 6. неумение читать и строить графики и принципиальные схемы;
- 7. неумение подготовить установку или лабораторное оборудование, провести опыт, наблюдения, необходимые расчеты или использовать полученные данные для выводов;
- 8. неумение пользоваться первоисточниками, учебником и справочниками;
- 9. нарушение техники безопасности;
- 10. небрежное отношение к оборудованию, приборам, материалам.

К негрубым ошибкам следует отнести:

- 1. неточность формулировок, определений, понятий, законов, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой 1-2 из этих признаков второстепенными;
- 2. ошибки при снятии показаний с измерительных приборов, не связанные с определением цены деления шкалы (например, зависящие от расположения измерительных приборов, оптические и др.);
- 3. ошибки, вызванные несоблюдением условий проведения опыта, наблюдения, условий работы прибора, оборудования;
- 4. ошибки в условных обозначениях на принципиальных схемах, неточность графика (например, изменение угла наклона) и др.;
- 5. нерациональный метод решения задачи или недостаточно продуманный план устного ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
- 6. нерациональные методы работы со справочной и другой литературой;
- 7. неумение решать задачи, выполнять задания в общем виде.

Недочетами являются:

- 1. нерациональные приемы вычислений и преобразований, выполнения опытов, наблюдений, заданий;
- 2. ошибки в вычислениях (арифметические кроме математики);
- 3. небрежное выполнение записей, чертежей, схем, графиков;

4. орфографические и пунктуационные ошибки (кроме русского языка).

8. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Основные понятия химии (уровень атомно-молекулярных представлений).

Выпускник научится:

- описывать свойства твёрдых, жидких, газообразных веществ, выделяя их существенные признаки;
- характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- раскрывать смысл основных химических понятий: атом, молекула, химический элемент, простое вещество, сложное вещество, валентность, используя знаковую систему химии;
- изображать состав простейших веществ с помощью химических формул и сущность химических реакций с помощью химических уравнений;
- вычислять относительную молекулярную и молярную массы веществ, а также массовую долю химического элемента в соединениях;
- сравнивать по составу оксиды, основания, кислоты, соли;
- классифицировать оксиды и основания по свойствам, кислоты и соли по составу;
- описывать состав, свойства и значение (в природе и практической деятельности человека) простых веществ кислорода и водорода;
- давать сравнительную характеристику химических элементов и важнейших соединений естественных семейств щелочных металлов и галогенов;
- пользоваться лабораторным оборудованием и химической посудой;
- проводить несложные химические опыты и наблюдения за изменениями свойств веществ в процессе их превращений; соблюдать правила техники безопасности при проведении наблюдений и опытов;
- различать экспериментально кислоты и щёлочи, пользуясь индикаторами; осознавать необходимость соблюдения мер безопасности при обращении с кислотами и щелочами.

Выпускник получит возможность научиться:

- грамотно обращаться с веществами в повседневной жизни;
- осознавать необходимость соблюдения правил экологически безопасного поведения в окружающей природной среде;
- понимать смысл и необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.;
- использовать приобретённые ключевые компетентности при выполнении исследовательских проектов по изучению свойств, способов получения и распознавания веществ;
- развивать коммуникативную компетентность, используя средства устного и письменного общения, проявлять готовность к уважению иной точки зрения при обсуждении результатов выполненной работы;
- объективно оценивать информацию о веществах и химических процессах, критически относиться к псевдонаучной информации, недобросовестной рекламе, касающейся использования различных веществ.

Периодический закон и периодическая система химических элементов Д. И. Менделеева. Строение вещества

Выпускник научится:

- классифицировать химические элементы на металлы, неметаллы, элементы, оксиды и гидроксиды которых амфотерны, и инертные элементы (газы) для осознания важности упорядоченности научных знаний;
- раскрывать смысл периодического закона Д. И. Менделеева;

- описывать и характеризовать табличную форму периодической системы химических элементов;
- характеризовать состав атомных ядер и распределение числа электронов по электронным слоям атомов химических элементов малых периодов периодической системы, а также калия и кальция;
- различать виды химической связи: ионную, ковалентную полярную, ковалентную неполярную и металлическую;
- изображать электронные формулы веществ, образованных химическими связями разного вида:
- выявлять зависимость свойств вещества от строения его кристаллической решётки (ионной, атомной, молекулярной, металлической);
- характеризовать химические элементы и их соединения на основе положения элементов в периодической системе и особенностей строения их атомов;
- описывать основные предпосылки открытия Д. И. Менделеевым периодического закона и периодической системы химических элементов и многообразную научную деятельность учёного;
- характеризовать научное и мировоззренческое значение периодического закона и периодической системы химических элементов Д. И. Менделеева;
- осознавать научные открытия как результат длительных наблюдений, опытов, научной полемики, преодоления трудностей и сомнений.

Выпускник получит возможность научиться:

- осознавать значение теоретических знаний для практической деятельности человека;
- описывать изученные объекты как системы, применяя логику системного анализа;
- применять знания о закономерностях периодической системы химических элементов для объяснения и предвидения свойств конкретных веществ;
- развивать информационную компетентность посредством углубления знаний об истории становления химической науки, её основных понятий, периодического закона как одного из важнейших законов природы, а также о современных достижениях науки и техники. Многообразие химических реакций.

Выпускник научится:

- объяснять суть химических процессов;
- называть признаки и условия протекания химических реакций; лённому типу по одному из классификационных признаков: 1) по числу и составу исходных веществ и продуктов реакции (реакции соединения, разложения, замещения и обмена); 2) по выделению или поглощению теплоты (реакции экзотермические и эндотермические); 3) по изменению степеней окисления химических элементов (окислительно-восстановительные реакции); 4) по обратимости процесса (реакции обратимые и необратимые);
- называть факторы, влияющие на скорость химических реакций;
- называть факторы, влияющие на смещение химического равновесия;
- составлять уравнения электролитической диссоциации кислот, щелочей, солей; полные и сокращённые ионные уравнения реакций обмена; уравнения окислительновосстановительных реакций;
- прогнозировать продукты химических реакций по формулам/названиям исходных веществ; определять исходные вещества по формулам/названиям продуктов реакции;
- составлять уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ различных классов;
- выявлять в процессе эксперимента признаки, свидетельствующие о протекании химической реакции;
- готовить растворы с определённой массовой долей растворённого вещества;

- определять характер среды водных растворов кислот и щелочей по изменению окраски индикаторов;
- проводить качественные реакции, подтверждающие наличие в водных растворах веществ отдельных катионов и анионов.

Выпускник получит возможность научиться:

- составлять молекулярные и полные ионные уравнения по сокращённым ионным уравнениям;
- приводить примеры реакций, подтверждающих существование взаимосвязи между основными классами неорганических веществ;
- прогнозировать результаты воздействия различных факторов на скорость химической реакции;
- прогнозировать результаты воздействия различных факторов на смещение химического равновесия. Многообразие веществ

Выпускник научится:

- определять принадлежность неорганических веществ к одному из изученных классов/групп: металлы и неметаллы, оксиды, основания, кислоты, соли;
- составлять формулы веществ по их названиям;
- определять валентность и степень окисления элементов в веществах;
- составлять формулы неорганических соединений по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;
- объяснять закономерности изменения физических и химических свойств простых веществ (металлов и неметаллов) и их высших оксидов, образованных элементами второго и третьего периодов;
- называть общие химические свойства, характерные для групп оксидов: кислотных, основных, амфотерных;
- называть общие химические свойства, характерные для каждого из классов неорганических веществ (кислот, оснований, солей);
- приводить примеры реакций, подтверждающих химические свойства неорганических веществ: оксидов, кислот, оснований и солей;
- определять вещество-окислитель и вещество-восстановитель в окислительно-восстановительных реакциях;
- составлять электронный баланс (для изученных реакций) по предложенным схемам реакций;
- проводить лабораторные опыты, подтверждающие химические свойства основных классов неорганических веществ;
- проводить лабораторные опыты по получению и собиранию газообразных веществ: водорода, кислорода, углекислого газа, аммиака; составлять уравнения соответствующих реакций.

Выпускник получит возможность научиться:

- прогнозировать химические свойства веществ на основе их состава и строения;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учётом степеней окисления элементов, входящих в его состав;
- выявлять существование генетической связи между веществами в ряду: простое вещество оксид кислота/ гидроксид соль;
- характеризовать особые свойства концентрированных серной и азотной кислот;
- приводить примеры уравнений реакций, лежащих в основе промышленных способов получения аммиака, серной кислоты, чугуна и стали;

- описывать физические и химические процессы, являющиеся частью круговорота веществ в природе;
- организовывать и осуществлять проекты по исследованию свойств веществ, имеющих важное практическое значение.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И МАТЕРИАЛЬНО - ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛНОГО ПРОЦЕССА

Натуральные объекты

Натуральные объекты, используемые в 8—9 классах при обучении химии, включают в себя коллекции минералов и горных пород, металлов и сплавов, минеральных удобрений. Ознакомление с образцами исходных веществ и готовых изделий позволяет получить наглядные представления об этих материалах, их внешнем виде, а также о некоторых физических свойствах. Значительные учебно-познавательные возможности имеют коллекции, изготовленные самими обучающимися. Предметы для таких коллекций собираются во время экскурсий и других внеурочных занятий. Коллекции используют только для ознакомления обучающихся с внешним видом и физическими свойствами различных веществ и материалов. Для проведения химических опытов коллекции использовать нельзя.

Химические реактивы и материалы

Обращение со многими веществами требует строгого соблюдения правил техники безопасности, особенно при выполнении опытов самими обучающимися. Все необходимые меры предосторожности указаны в соответствующих документах и инструкциях, а также в пособиях для учителей химии. Все реактивы и материалы, нужные для проведения демонстрационного и ученического эксперимента, поставляются в образовательные учреждения общего образования централизованно в виде заранее скомплектованных наборов. При необходимости приобретения дополнительных реактивов и материалов следует обращаться в специализированные магазины.

Химическая лабораторная посуда, аппараты и приборы

Химическая посуда подразделяется на две группы: для выполнения опытов обучающимися и для демонстрационных опытов. Приборы, аппараты и установки, используемые на уроках химии в 8 —9 классах, классифицируют на основе протекающих в них физических и химических процессов с участием веществ, находящихся в разных агрегатных состояниях:

1) приборы для работы с газами — получение, собирание, очистка, сушка, поглощение газов; реакции между потоками газов; реакции между газами в электрическом разряде; реакции между газами при повышенном давлении; 2) аппараты и приборы для опытов с жидкими и твёрдыми веществами — перегонка, фильтрование, кристаллизация; проведение реакций между твёрдым веществом и жидкостью, жидкостью и жидкостью, твёрдыми веществами. Вне этой классификации находится учебная аппаратура, предназначенная для изучения теоретических вопросов химии — для иллюстрации закона сохранения массы веществ, для демонстрации электропроводности растворов и движения ионов в электрическом поле, для изучения скорости химической реакции и химического равновесия. Вспомогательную роль играют измерительные и нагревательные приборы, различные приспособления для выполнения опытов. Модели

Объектами моделирования в химии являются атомы, молекулы, кристаллы, заводские аппараты, а также происходящие процессы. В преподавании химии используют модели кристаллических решёток алмаза, графита, серы, фосфора, оксида углерода(IV), иода, железа, меди, магния. Промышленностью выпускаются наборы моделей атомов для составления шаростержневых моделей молекул.

Учебные пособия на печатной основе

В процессе обучения химии используют следующие таблицы постоянного экспонирования: «Периодическая система химических элементов Д. И. Менделеева», «Таблица растворимости кислот, оснований и солей», «Электрохимический ряд напряжений металлов» и др. Для организации самостоятельной работы обучающихся на уроках используют разнообразные

дидактические материалы: тетради на печатной основе или отдельные рабочие листы — инструкции, карточки с заданиями разной степени трудности для изучения нового материала, самопроверки и контроля знаний.

Экранно-звуковые средства обучения

К экранно-звуковым средствам обучения относят такие пособия, которые могут быть восприняты с помощью зрения и слуха. Это кинофильмы, кинофрагменты, диафильмы, диапозитивы(слайды), единичные транспаранты для графопроектора. Серии транспарантов позволяют имитировать движение путём последовательного наложения одного транспаранта на другой.

Технические средства обучения (ТСО)

Большинство из технических средств обучения не разрабатывалось специально для школы, а изначально служило для передачи и обработки информации: это различного рода проекторы, телевизоры, компьютеры и т. д. В учебно-воспитательном процессе компьютер может использоваться для решения задач научной организации труда учителя. При использовании технических средств обучения следует учитывать временные ограничения, налагаемые Санитарными правилами и нормами (СанПиН). Непрерывная продолжительность демонстрации видеоматериалов на телевизионном экране и на большом экране с использованием мультимедийного проектора не должна превышать 25 мин. Такое же ограничение (не более 25 мин) распространяется на непрерывное использование интерактивной доски и на непрерывную работу обучающихся на персональном компьютере. Число уроков с использованием таких технических средств обучения, как телевизор, мультимедийный проектор, интерактивная доска, должно быть не более шести в неделю, а число уроков, когда обучающиеся работают на персональном компьютере, — не более трёх в неделю

10. УМК ДЛЯ УЧИТЕЛЯ

- 1. Г.У. Рудзитис, Ф.Г.Фельдман. Химия 8; учебник для общеобразовательных учреждений. М.:Просвещение, 2016
- 2. Г.У. Рудзитис, Ф.Г.Фельдман. Химия 9; учебник для общеобразовательных учреждений. М.:Просвещение, 2017
- 3. Гара Н.Н., Габрусева Н.И. Задачник с «помощником». 8-9 классы.
- 4. Рудзитис Г.Е.Дидактический материал. 8-9 классы.
- 5. Электронное пособие «Видеодемонстрации». 8, 9 класс.
- 6. Гара Н.Н. Пособие для учителя. 8, 9 классы.
- 7. Гара Н.Н. Рабочие программы. 8-9 классы.
- 8. Тесты по химии. 9 класс. К учебнику Г.Е. Рудзитиса, Ф.Г. Фельдмана «Химия. 8- 9 класс».
- 9. Р.А.Лидин и др. Химия. 8-9 классы. Дидактические материалы.

Справочная литература:

- 10. Химия. Большой справочник для школьников и поступающих в вузы.
- 11. Химия. Краткий справочник школьника. 8-11 классы (авт. Е.А.Еремина, В.В.Еремин, Н.Е.Кузьменко.
- 12. Школьная энциклопедия химических элементов (авт.А.М.Смолеговский и др.).
- 13. Химия. Справочник школьника и студента.
- 14. Химия в формулах. 8-11 классы. (авт. В.В.Еремин).
- 15. Химия в таблицах. 8-11 классы. (авт. А.Е.Насонова).

11. УМК ДЛЯ УЧАЩИХСЯ

- 16. Г.У. Рудзитис, Ф.Г. Фельдман. Химия 8; учебник для общеобразовательных учреждений.
- -М.:Просвещение, 2016
- 17. Г.У. Рудзитис, Ф.Г. Фельдман. Химия 9; учебник для общеобразовательных учреждений.

-М.:Просвещение, 2017